

No One Size Fits All: Accepting Datatype V)ariety

ISO/IEC JTC1 SC32 Big Data Analytics Study Group

Amsterdam / NL, 2014-05-15

Peter Baumann

Jacobs University | rasdaman GmbH p.baumann@jacobs-university.de

Big Data (not only) in Geo

- Roughly: Spatio-temporal sensor, image, simulation, statistics data
 - Often n-D raster data = arrays
- "massive arrays & graphs next great challenges" [major DBMS vendors]
 - "n-D array support critical to Big Data" [US SQL committee]

Big Data (not only) in Geo

- Roughly: Spatio-temporal sensor, image, simulation, statistics data
 - Often n-D raster data = arrays
- "massive arrays & graphs next great challenges" [major DBMS vendors]
 - "n-D array support critical to Big Data" [US SQL committee]

Datatype Variety :: SC32 :: Peter Baumann

RM-ODP for Tackling Big Data

- OGC BigData Working Group utilizes RM-ODP
 - Reference Model for Open Distributed Processing
 - collaborative writing by variety of stakeholders
- Accommodates different perspectives:
 - enterprise viewpoint: purpose, scope and policies
 - information viewpoint: semantics of information & processing
 - computational viewpoint: functional decomposition, interfaces
 - engineering viewpoint: distribution of processing
 - technology viewpoint: choice of technology

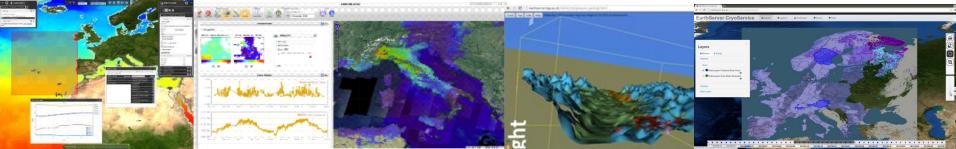
Variety

- RM-ODP informational / computational viewpoint: at first glance, many different data structures:
 - Stock trading: 1-D sequences
 - Social networks: large, homogeneous graphs
 - Ontologies: small, heterogeneous graphs
 - Climate modelling: 4D/5D arrays
 - Satellite imagery: 2D/3D arrays (+irregularity)
 - Genome: long strings
 - Particular physics: sets of events
 - XML data: hierarchies
 - Key/value stores: sets of unique identifiers + whatever
 - etc.
- reducible to a few core structures: sets/bags; n-D arrays; graphs; trees; ...

Use Case 1: Arrays in SQL


under discussion in ISO

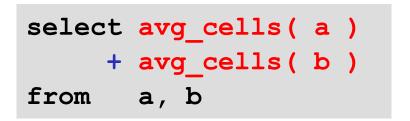
Arrays in DDL (extending SQL:1999 1-D arrays):


```
create table LandsatScenes(
    id: integer not null, acquired: date,
    scene: row( red: integer, ..., blue: integer ) array [ 0:4999,0:4999] )
```

Arrays in DML:

"band 1 histogram, in CSV, of Landsat scenes acquired in June 1990"

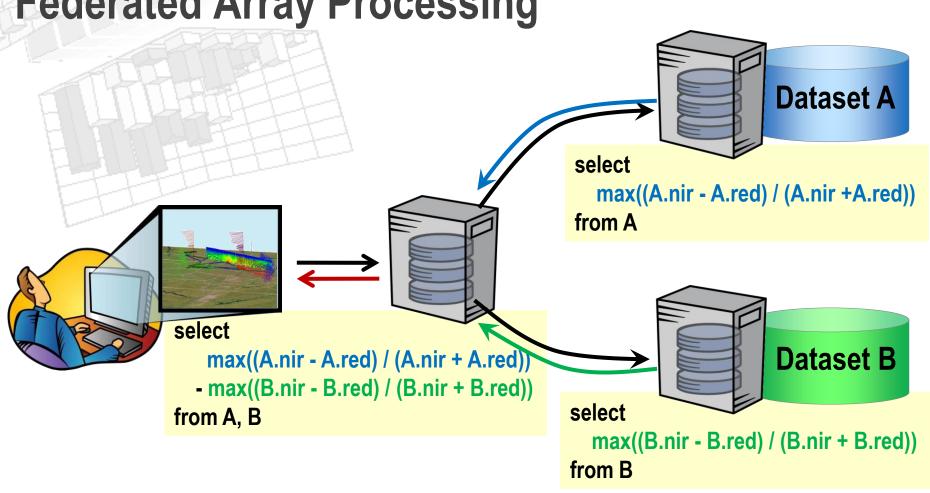
[rasdaman screenshots]


Sample Application: Database Visualization

```
select
  encode (
    struct {
      red:
             (char) s.image.b7[x0:x1,x0:x1],
      green: (char) s.image.b5[x0:x1,x0:x1],
      blue:
            (char) s.image.b0[x0:x1,x0:x1],
      alpha: (char) scale(d.data, 20)
    },
    "image/png"
from SatImage as s, DEM as d
```


Q'Optimization 1: Query Rewriting

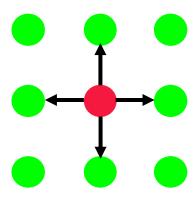
```
select avg_cells(a + b)
from a, b
```

- understood:
 heuristic optimization
 150 rules in rasdaman [Ritsch 2002]
- partially understood: cost-based optimization

Q'Optimization 2:

Federated Array Processing

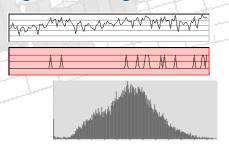


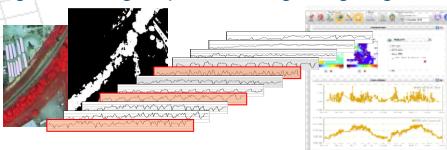
One Size Fits All?

- Distinguishing property of arrays: n-D Euclidean neighborhood
- Arrays as sets of tuples (x,y,r,g,b) ?

COMMON SENSE

Just because you can, doesn't mean you should.


Use Case 2: Sat Imagery Standards


- Open Geospatial Consortium (OGC): geo data & service standards
- Coverage = space/time varying phenomenon [ISO,OGC]
 - n-D raster data, point clouds, meshes
 - Conceptually: GML, in practice: GeoTIFF, NetCDF, ...
 - Like metadata!
- Web Coverage Processing Service (WCPS): coverage QL
 - Integrated data/metadata queries
 - → integration WCPS + XQuery
 - → WCPS 2.0 draft

WCPS: the OGC Coverage Query Language

- OGC Web Coverage Processing Service (WCPS)
 - = high-level grid coverage filtering & processing language

...but only those where nir exceeds 127 somewhere

```
for $c in ( M1, M2, M3 )
where
    some($c.nir > 127)
return
    encode(
    $c.red - $c.nir,
    "image/tiff"
)
(tiffA'
tiffC)
```

Datatype Variety :: SC32 :: Peter Baumann

WCPS + XQuery

Ex1: "difference of red, nir bands for all coverages on Austria"

```
for $c in doc("http://acme.com")//coverage
where
    some($c.nir > 127) and metadata/@region = "Austria"
return
    encode($c.red - $c.nir, "image/tiff")
```

Ex2: "name & location of coverages showing some phenomenon"

- WCPS 2.0, in progress
 - Implementation: federation of eXist + rasdaman

Sermantic-Rich Interfaces

WCPS: semantics in parseable query

```
for $c in (M1, M2, M3)
return encode abs($c.red - $c.nir), "hdf")
```

WPS: semantics in human-readable text

```
<ProcessDescriptions ...>
  <ProcessDescription processVersion="2" storeSupported="true" statusSupported="false">
    <ows:Identifier>Buffer</ows:Identifier>
    <ows:Title>Create a buffer around a polygon.
    <ows: Abstract>Create a buffer around a single polygon. Accepts the polygon as GML and
provides GML output for the buffered feature. </ows:Abstract>
    <ows:Metadata xlink:title="spatial" />
    <ows:Metadata xlink:title="geometry" />
    <ows:Metadata xlink:title="buffer" />
    <ows:Metadata xlink:title="GML" />
    <DataInputs>
      <Input>
        <ows:Identifier>InputPolygon</ows:Identifier>
        <ows:Title>Polygon to be buffered</ows:Title>
        <ows:Abstract>URI to a set of GML that describes the polygon.</ows:Abstract>
        <ComplexData defaultFormat="text/XML" defaultEncoding="base64" defaultSchema="http</pre>
//foo.bar/gml/3.1.0/polygon.xsd">
          <SupportedComplexData>
                                                                        1,1
                                                                                       Top
```

Datatype Variety :: SC32 :: Peter Baumann

Summary

- Big Data Variety includes variety of data types
 - Sets/bags, graphs, arrays, documents, ...
- Each data type calls for its specific operations
 - Domain-Specific Languages (DSLs)
 - Likely: data management subsystems
- The Future (IMHO):
 Dedicated data languages + next-gen mediators
 - Cross-model integration & optimization & parallelization
 - First, local approaches known (XQuery+WCPS; SQL+arrays) ...general solution?